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In nonequilibrium steady states �NESS� far from equilibrium, it is known that the Einstein relation is
violated. Then, the ratio of the diffusion coefficient to the mobility is called an effective temperature, and the
physical relevance of this effective temperature has been studied in several works. Although the physical
relevance is not yet completely clear, it has been found that the role of an effective temperature in NESS is
indeed analogous to that of the temperature in equilibrium systems in a number of respects. In this paper, we
find further evidence establishing this analogy. We employ a nonequilibrium Langevin system as a thermostat
for a Hamiltonian system and find that the kinetic temperature of this Hamiltonian system is equal to the
effective temperature of the thermostat.
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Fluctuation-dissipation relations �FDRs� relate dynamical
properties of fluctuations in systems under equilibrium con-
ditions to linear transport properties of nonequilibrium sys-
tems through the detailed-balance condition �1�. Representa-
tive examples of FDRs are the Einstein relation, which
relates a diffusion coefficient and a mobility, and the Green-
Kubo relation, which relates current fluctuations and the cor-
responding conductivities.

In recent years, the properties of fluctuations and linear
responses to perturbations have been investigated for non-
equilibrium states even outside the linear response regime,
specifically in steady-state systems �2–4� and in aging sys-
tems �5–8�. Although we cannot expect FDRs to be generally
valid outside the linear response regime, there have been
several relations proposed and investigated recently that rep-
resent extensions of FDRs to systems far from equilibrium
�9–12�.

In Refs. �9,10�, the violation of FDRs is studied in the
case of a nonequilibrium one-dimensional Langevin system
in which a Brownian particle is subject to a spatially constant
driving force f and a periodic potential U�x�. Explicitly, the
system studied there is

�ẋ = −
�U�x�

�x
+ f + ��t� ,

���t���t��� = 2�T��t − t�� , �1�

where x�t� is the position of the Brownian particle, ��t� is
Gaussian noise, � is the friction coefficient, and T is the
temperature of the environment. �The Boltzmann constant is
set to unity.� In this model, in the linear response regime, the
Einstein relation

D = �dT �2�

holds, where D is the diffusion coefficient and �d is the
differential mobility defined as

D�f� � lim
t→�

��x�t� − x�0� − vs�f�t�2�
2t

, �3�

�d�f� �
dvs�f�

df
. �4�

Here vs�f� is the steady-state velocity of the Brownian par-
ticle and is known as the Stratonovich formula �9,13�. How-
ever, outside the linear response regime, i.e., for large f , the
above Einstein relation does not hold. In such situations, as
an extension of the concept of temperature, it is natural to
define the following quantity:

��f� �
D�f�
�d�f�

. �5�

Then, outside the linear response regime, we have ��T.
Thus, the introduction of � allows us to define an extended
Einstein relation that applies to nonequilibrium steady states
�NESS� far from equilibrium, although this leads to the ques-
tion of the physical significance of �. In Refs. �9,10�, in
order to elucidate the physical significance of �, a large-
scale description of the system was derived by applying a
perturbation method to the Fokker-Planck equation �9� and
by considering a finite time average of the Langevin equation
�10�. With these treatments, it was found that � plays the
role of a temperature in the large-scale description of the
nonequilibrium Langevin system �1�, and for this reason, it is
referred to as an effective temperature.

In this paper, we present a study that further establishes
the role of � as an effective temperature for NESS. Here, we
employ a Langevin system in a NESS as a thermostat for a
Hamiltonian system, and we investigate the temperature of
the Hamiltonian system established by this thermostat. More
precisely, we set out to determine whether the kinetic tem-
perature of the Hamiltonian system is equal to � in this
situation. We find that, in fact, the kinetic temperature is
equal to � in the case that the thermostat moves at the speed
v=−vs�f�, so that the average velocity of the Brownian
particle relative to the Hamiltonian system is zero. �See the
schematic in Fig. 1 and Moving thermostat for details.�
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Stationary thermostat. In Fig. 1, we present a schematic
depiction of the model we study. In this section, we consider
a combined system consisting of a Hamiltonian system in
contact with a Langevin thermostat in the case that the two
are relatively at rest, i.e., v=0.

The Langevin thermostat consists of N Brownian particles
�N=20� which are confined to move along a single direction,
say the x direction. Because there is no interaction between
the Brownian particles, the statistical properties of each are
the same as those in the model �1�, studied in Refs. �9,10�.
Each Brownian particle is subject to a constant driving force
f and a periodic potential U�xi�= �U0 /T�sin�2�xi /��, where
xi represents the position of the ith particle. The size of the
thermostat is chosen as 20� �−10�	xi	10��, and periodic
boundary conditions are imposed on the Brownian particles.

The Hamiltonian system we consider is a one-
dimensional system consisting of a single particle. Each
Brownian particle in the Langevin system interacts with
this Hamiltonian particle through the potential Uint
=
�xi−xH�2 /2 for �xi−xH��rc and Uint=0 otherwise, where
xH is the position of the Hamiltonian particle, and rc is the
cutoff length of the interaction. This particle is confined to
the region −5�	xH	5� by wall potentials of the forms
UL�xH�= �xH+5��−4 and UR�xH�= �xH−5��−4.

The time evolution of the ith Brownian particle is de-
scribed by the one-dimensional Langevin equation

�ẋi = −
�U�xi�

�xi
+ f −

�Uint�xi − xH�
�xi

+ �i�t� ,

��i�t�� j�t��� = 2�T��t − t���i,j , �6�

and that of the Hamiltonian particle is described by

mv̇H = − 	
i=1

N
�Uint�xi − xH�

�xH −
�UL�xH�

�xH −
�UR�xH�

�xH ,

ẋH = vH. �7�

In our numerical simulation, the velocity Verlet method was
adopted to integrate the equation of motion �7� with a time
step �t=5
10−5, and we used the parameter values T=1,
�=1, �=1, U0=3, 
=1, m=1, rc=4, and 0	 f 	25. As to an
initial condition, xH�0�=0, xi�0�= i /2−10 �i=1,2 , . . . ,20�,
and vH�0� was chosen randomly according to a Gaussian
distribution.

We define the velocity fluctuation of the Hamiltonian par-
ticle as

K�t� � m
�vH�t�2� − �vH�t��2� . �8�

In Fig. 2, we plot K�t� as a function of time for f =0 and
f =10 in the case of a stationary thermostat. Next, we define
the kinetic temperature as

K̄ � lim
t→�

K�t� . �9�

In the case f =0, we find that K̄=1.00±0.016, which is equal
to the temperature of the environment �T=1�. In the case
f =10, because the Brownian particles exhibit a nonzero av-
erage velocity maintained by f , significantly more heat flows
into the Hamiltonian system than in the case f =0. But in this
case, as in the f =0 case, as t increases, K�t� approaches a
constant value, with a kind of stationary behavior being es-
tablished between the Hamiltonian system and the thermo-

stat. In this case, we find K̄=6.22±0.22. �We obtain K̄ by
averaging K�t� over the intervals t� �60,150� and
t� �200,300� for f =10 and f =0, respectively.�

Moving thermostat. Next, we consider the case of a mov-
ing thermostat. Specifically, we study the situation in which
the thermostat moves at a constant speed of v=−vs�f� rela-
tive to the Hamiltonian system, where vs�f� is the steady-
state velocity of the Brownian particles �9�. With such a
moving thermostat, the average velocity of each Brownian
particle measured with respect to the spatial coordinate of the
Hamiltonian system vanishes. Defining yi�xi−vs�f�t, we
can realize such a system by simply replacing Uint�xi−xH�
with Uint�yi−xH� in Eqs. �6� and �7�.

In Fig. 3, we plot K�t� as a function of time in the cases
f =5, 10, and 15. Note that in order to obtain these results for
K�t�, we use the analytical solutions of vs�f� for the model
�1� �14�. From the data plotted in the graphs of Fig. 3, we

find K̄=1.25±0.05 in the case f =5, K̄=1.54±0.03 in the

case f =10, and K̄=1.68±0.06 in the case f =15. Comparing
the middle graph of Fig. 3 with the lower graph of Fig. 2,
both corresponding to the case f =10, we find that the value

FIG. 1. Schematic depiction of the “moving thermostat.” The
thermostat moves at a speed v relative to the Hamiltonian system.
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FIG. 2. K�t� obtained using a stationary thermostat as a function
of time in the cases f =0 �upper� and f =10 �lower�. These results
were obtained from 5000 samples.
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of K̄ obtained when using the moving thermostat differs sig-
nificantly from that obtained when using the stationary ther-
mostat.

Now, let us compare the above results for K̄ with the
values of � for the thermostat. In Ref. �9�, from calculations
of D�f� and �d�f�, it was found that D /�d=1.24 in the case
f =5, D /�d=1.52 in the case f =10, and D /�d=1.67 in the
case f =15 for the model �1�. Because T=1, these values of
D /�d indicate that the Einstein relation �2� does not hold for

f �5. Comparing these values with the values of K̄ computed

presently, we find that the relation K̄=D /�d holds when 
,
which represents the strength of the interaction between the
thermostat and the Hamiltonian system, is sufficiently small
�15�. This implies that the kinetic temperature of the Hamil-
tonian system is equal to the effective temperature � given
by Eq. �5� in the case that the Hamiltonian system is in

contact with the moving thermostat. In Fig. 4, we compare K̄
with � ��D /�d� for various values of f . It is seen that the
relation

K̄ = � �10�

holds, to the precision of the numerical computations.
Interpretation of Eq. �10�. In Ref. �9�, a large-scale de-

scription of the probability density for the model �1� was
derived using a perturbation method, and it was found that �

appears as a temperature in a Fokker-Planck equation of the
coarse-grained probability density. Then, in order to further
investigate the physical properties of �, in Ref. �10�, a
coarse-grained description of the motion of a Brownian par-
ticle was derived by computing a finite time average of the
Langevin equation, rather than analyzing the probability den-
sity. This coarse-grained description is given by the equa-
tions ��Xn+1−Xn� /�t=F+�n and ��n�m��t=2���m,n,
where we have F��vs, Xn�x�tn�, and tn�n�t
�n=0,1 ,2 , . . . �, and the time interval �t is chosen to be suf-
ficiently longer than the characteristic time of the system.
Here, � and F are uniquely determined as functions of the
parameters that appear in the model �1� �10�. Then, using the
moving coordinates Yn�Xn−vstn, we can describe the large-
scale motion of a Brownian particle by the equilibrium-form
Langevin equation

�
Yn+1 − Yn

�t
= �n. �11�

In the present investigation, choosing the cutoff length of
the interaction between the Brownian particles and the
Hamiltonian particle, rc, to be sufficiently large, we consid-
ered the change in behavior of the system as we increase the
number of the Brownian particles that interact with the
Hamiltonian particle. In the case that there are many Brown-
ian particles, the Hamiltonian particle moves slowly enough
that its characteristic time is larger than �t. Because in this
case, when we use the moving thermostat, the motion of
each Brownian particle is described by Eq. �11�, we obtain
the result �10�.

Heat conduction. As an application of the moving Lange-
vin thermostat, we study the heat conduction system de-
scribed below �see the schematic depiction in Fig. 5�. Here, a
one-dimensional Hamiltonian system consisting of ten par-
ticles is in contact with two thermostats: a moving, nonequi-
librium thermostat of the type described above and an equi-
librium thermostat. Although the temperatures of the
environments of both thermostats are set to T=1, it is ex-
pected that a nonzero heat flux will be observed in the
Hamiltonian system because � �which differs from T� plays
the role of the temperature in the moving thermostat.

Let xj
H be the position of the jth Hamiltonian particle

�j=1, . . . ,10�. In our model, the jth particle interacts only
with its neighbors �the j±1th particles� through the potential
Uint

H �xj
H−xj±1

H �= �1 /2��xj
H−xj±1

H �2+ �10 /4��xj
H−xj±1

H �4. Then,
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FIG. 3. K�t� obtained using a moving thermostat as a function of
time in the cases f =5 �upper�, f =10 �middle�, and f =15 �lower�.
These results were obtained from 5000 samples.
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FIG. 4. The kinetic temperature K̄ obtained using a moving
thermostat as a function of f �circles�. The solid curve denotes the
analytical solution of ��f� ��D�f� /�d�f�� for the model �1� �9�.

FIG. 5. Schematic depiction of the heat conduction system using
the effective temperature.
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only the first Hamiltonian particle is in contact with the equi-
librium thermostat, and only the tenth Hamiltonian particle is
in contact with the moving thermostat.

Defining K̄j as the kinetic temperature of the jth

Hamiltonian particle, in Fig. 6, we plot K̄j. It is seen that
Kj �Kj+1. This is due to the relation ��T. Although �

�T in our model, it has been reported that the case ��T
can also be realized with an appropriate choice of the peri-
odic potential U�xi� �16�. This implies that we could control
the direction of the heat flux by altering the functional form
of U�xi�.

Conclusion. In this paper, we have investigated the use of
a Langevin system in a NESS as a thermostat to establish the
kinetic temperature of a Hamiltonian system. Our main re-
sults consist of the relation �10� and the data plotted in Fig.
6, both obtained with the use of the moving Langevin ther-
mostat. Because the physical relevance of effective tempera-
tures in NESS �9,10�, glassy systems �5–7�, and biomol-
ecules �8� is not yet fully clarified, we hope that our study
sheds more light on it.
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